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PREFACE

This Memorandum was prepared as part of RAND's continuing study
of Communications Satellite Technology for the National Aeronautics
and Space Administration. It presents a new formulation which can be
used to compute the distortion experienced by an FM signal as it
passes throught the various circuits encountered in an FM receiver.
The nature of the fundamental expansion used is such that it overcomes
the major criticism of previous approaches to the problem.

The theoretical results of the Memorandum should add to the
understanding of distortion and crosstalk in FM signals, and there-
fore constitute a significant contribution to communication theory
and practice. The results can be used by engineers designing advanced

communication systems to achieve optimum performance.




SUMMARY

An important problem in the theory and practice of receiving
angle-modulated signals is the proper design of the filtering elements
which must be employed. It has been known for some time that such
filtering introduces distortion and crosstalk into the signal, but the
formulations for their computation available heretofore have not been
applicable to the level of accuracy required because of an inherent
limitation in their basic character,

In this Memorandum, an angle-modulated signal having an arbitrary
phase function is applied to a symmetrical, narrow, band-pass filter
and the phase of the output is expanded in a series which converges
for all values of the input phase subject to certain conditions on
the input signal and the filter impulse response. The expansion is
unique in that its leading term is the linearly filtered input rather
than the customary quasi-stationary term,

A spectral analysis is performed by assuming a stochastic modula-

. .
ting signal and exs

imining the third- and fifth-order terms of the out-

o

put phase expansion, The results are presented in the form of signal,
distortion and crosstalk components of the output spectrum and it is
argued that they represent the principal contributions in the case
where the total distortion is small,

To illustrate the method and to present results of direct utility
for an example of current interest, numerical computations are performed
for the case of an FM signal, having a uniform modulation baseband,

which is passed through a single-pole filter. The spectra of the
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signal, distortion and crosstalk components of the resulting signal
are then presented graphically.

The importance of this example derives from the fact that the
limited signal power available from communication satellites and space
probes has stimulated the use of FM signals and frequency feedback
receivers. Such receivers are constrained to the use of single-pole
filters for reasons of stability and therefore incur considerable
distortion and crosstalk in comparison with conventional FM receivers.
The numerical results presented here will pemmit the selection of the
proper filter bandwidth in order to attain the maximum threshold
reduction while maintaining a specified level of crosstalk and distor-

tion.
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L. INTRODUCTION

One of the most intriguing problems relating to the theory of
angle (i.e., frequency or phase) modulation is that of obtaining a
useful relationship between the properties of the input and output
modulation when an angle-modulated signal is passed through a linear
network. From the earliest work by Carson and Fry(l) in 1937 to the

present, interest has persisted as others have extended results and

(2)

added new approaches. These are reviewed in detail by Baghdady

(3)

and by Panter, and it need be noted here only that the results

have generally been presented either as infinite series involving

Taylor's series expansions of both the modulating signal and the

(1) (4) (5)

filter transfer function (Carson and Fry,

(6) (7))

Bloch, Van der Pol,

Stumpers, Clavier or as finite series involving the poles of

the polynomial representation and but one derivative of the modulating

(8,9) Weiner and Leon(lo’ll)).

signal (Hupert,
It is characteristic of all these expansions that they are in
the form of a leading term called the quasi-stationary response and
a remainder constituting a correction term. The quasi-stationary
response, a term introduced by Carson and Fry, is obtained by sub-
stituting the time-dependent, instantaneous frequency of the modulated
signal for the steady-state frequency variable in the network trans-
fer function. The quasi-stationary response is appealing intuitively
since it is what might be expected if the frequency variations were

made slowly enough. It has been useful analytically because the ap-

plications of interest are usually those in which the distortion is



sufficiently small that the correction term can be neglected and the
quasi-stationary response alone used in further analysis. As might
be expected, considerable attention has been directed to questions
of convergence and to obtaining bounds on the correction term
(Baghdady,(z) Rowe,(lz) Hess,(lB) Weiner and Leon(ll)).

Initial applications of these techniques were made using deter-

(14-20) or two(21) sinusoids

ministic signals. Modulation using one
leads to a tractable analysis and yields results useful in determining
harmonic distortion and the IF bandwidths required in FM receivers.

(25,26)

(See Refs. 13, 22-24.) Swept frequency analyses have applica-

tions to spectrum analyzers, while responses to frequency steps and

impulses(5’27-3o)

are valuable in studies of impulsive interference,
such as ignition noise, or in certain modulation techniques, such as
frequency- or phase-shift keying.

More recently, analyses have been performed using stochastic

modulating signals. These have been adapted to the square-law phase

(31) (32)
(33)

characteristic of the ionosphere by Shaft and Prosin and to

the case of echo distortion by Bennett, Curtis and Rice. Gener-

alized analyses applicable to band-pass filters have been made by

(34) (35) (36)

Rice, Bosse, Medhurst and Magnusson.(37) While these

analyses have made significant contributions by considering more
realistic modulating signals, they have been criticized because of

(38)

their quasi-stationary nature (Bedrosian ) or their first-order
basis (Enloe and Ruthroff(39)) inasmuch as terms of possibly signifi-

cant contribution may have been discarded.




Recently, the limited amount of signal power available in
communication links from earth satellites and space probes has revived
interest in the technique of FM with frequency feedback invented by

(40) . . s . .
Chaffee. Considerations of stability require that a single-pole

(41)

IF filter be used and Enloe shows that optimum threshold reduction
requires that the IF filter have a 3-db bandwidth comparable to the
larger of the peak frequency deviation or the highest baseband fre-

(42) (43)).

quency used (Ruthroff and Bodtmann, Giger and Chaffee Thus,
it has become all the more important that a satisfactory theoretical
analysis be developed.

In contrast with a conventional FM receiver in which the IF
amplifier can be designed to have an essentially linear phase cha-
racteristic and a uniform passband with steep skirts, an FM receiver
employing feedback is forced to operate over an IF characteristic
which is quite nonlinear. Although the feedback process itself helps
reduce distortion, significant distortion and intermodulation or
crosstalk can occur in practical situations and must be taken into
account, 1In fact, at least one manufacturer of high-quality, multi-
channel systems finds the intermodulation sufficiently severe to
warrant the use of threshold extension by frequency feedback only
the system falls below the conventional FM threshold.

The analysis presented in this Memorandum does not proceed from
the expansions customarily used. A signal with an arbitrary angle mo-
dulation is applied to a symmetrical, band-pass filter and an expres-

sion is obtained for the angle modulation on the output signal. This

output phase is then expanded in a series in which the leading




(first-order) term is recognized as the filtered but undistorted
signal component of the output., The subsequent terms constitute

the higher odd-order contributions to the output. A spectral analysis
using stochastic modulation then derives the signal component of the

output spectrum from the autocorrelation of the first-order term,

the first-order distortion from the cross correlation of the first-
and third-order terms, and the first-order crosstalk from the auto-
correlation of the third-order term. The output signal, distortion
and crosstalk spectra are computed numerically for the specific
example of a signal frequency-modulated by a uniform spectrum of
gaussian noise and passed through a single-pole filter.

Questions of convergence and of higher-order contributions due
to neglecting the fifth- and higher-order terms in the expansion are
considered. 1In general, it is argued that the first-order distortion
and crosstalk computed herein constitute the principal distortion
contributions to the output in the case of small distortion. Conse-
quently, the results should find wide application in cases of practical

interest.




II. INPUT-OUTPUT PHASE RELATIONSHIP

Consider an angle-modulated signal of unit amplitude having a
carrier frequency, fo cps, and a phase modulation, ¢(t), which, in

complex form, can be written

exp i[2nfot + p(t)] @)

Furthermore, let the properties of ¢(t) and its derivative, the phase
rate @(t), be such that the signal is narrow band, i.e., most of its
energy is restricted to frequencies in the vicinity of fo.

Take this angle-modulated signal as the input to a symmetrical,
band-pass filter centered at f0 and let the filter be sufficiently
narrow that its transfer function can be well approximated by a
symmetrical function of the linear off-center frequency difference,
f-fo, where f is the steady-state frequency variable. It is then
readily shown that the effect of band-pass filtering on the original
signal-is the same as the effect of filtering by the low-pass equiva-
lent filter on the low-pass equivalent signal. That is, fo may simply
be set equal to zero.

Let G(f) and g(t) denote, respectively, the normalized steady-
state transfer function and impulse response of the equivalent low-
pass filter. Then G and g are a Fourier pair

g(t) = J df G(f)e ,  G(f) = J dt g(t)e-iant )

- 0

i2rnft

where g(t) is real and vanishes for t < 0, and G(f) is complex with

an even real part and an odd imaginary part so that




%*
G(f) = G (-6 (3)
%
where denotes the complex conjugate. The normalization chosen is

f du g(u) = G(0) =1 4

The filter output signal is given by the convolution of the input

with the filter impulse response

I du g(u) exp [i @(t-u)] (5)
0

and the output phase by the argument of Eq. (5)

©

f du g(u)sin op(t-u)
5(t) = tan L 2 (6)

[oe]

I du g(u)cos @(t-u)
0

Expanding as shown in Appendix A then leads to

5(6) = #(t) - j au g0 [pe-n)-5()1%+ L f du g [o(t-w)-#(6) T’
0 (7

] av sy lote-w-2(6 1 [ au glw) [oCe-w)-2(0) P+ 0(¢")
0 0
where

2(6) = [ au g(u)o(e-u) (8)
0




corresponds to the linearly filtered input phase and O(q?) denotes
terms of order 7 and higher in @(t). Necessary and sufficient condi-
tions for Eq. (7) to converge for all ¢ are that the Taylor's series
for the input signal exp[i@(t)] converge uniformly in the infinite
interval on t, that the complex output signal given by Eq. (5) not

vanish, and that

@D

[ auls)] <2 (9
0

The output phase rate, é(t), is then simply the time derivative of
Eq. (7), providing the resulting series also converges uniformly.

It is difficult to state general conditions on the behavior at
the input signal based on the foregoing and specific cases must be
considered individually. However, the convergence condition of Eq. (9)
does insure, in effect, that the filter impulse response and transfer
function are sufficiently "well behaved." The condition is clearly
satisfied by a first-order filter--inspection of impulse response
plots shows it to be satisfied by Bessel filters of all orders and by
low-order Butterworth and Tchebycheff filters as well.

The expansion given by Eq. (7) can also be obtained directly as

(44) as shown in Appendix B. Though the

a functional Taylor's series,
approach is more siraightforward, it does not appear possible to state
conditions of convergence, At best, it confirms that the contributions
of various orders are completely represented in the expansion.

The form of the input-output relationship given by Eq. (7) is

particularly desirable in that the leading term clearly corresponds to

the undistorted signal component of the output and is simply the




linearly filtered input. The remaining terms then constitute the
various higher odd orders of distortion and are interesting in that

they highlight the difference between the delayed and filtered inputs,
i.e., @(t-u)-®(t), as the expansion parameter. This quantity is
generally the least for that delay at which the impulse response is

the greatest, For large delays, its growth is easily overcome by the
eventual exponential decrease of all physically realizable impulse
responses. Also, it is worth noting that the compactness of the
expansion is itself of considerable value because it greatly facilitates

the ensuing spectral analysis,




II1I. SPECTRAL ANALYSIS

In communications systems analysis, the effect of the small non-
linearities encountered in signal processing is frequently better
described in terms of the statistical properties of an ensemble of
representative signals than by the explicit nature of a specific
gignal. Typical of the situations in which an angle-modulated signal
can suffer significant distortion due to band-pass filtering is one
in which the phase or instantaneous frequency of the carrier is made
to vary in accordance with the amplitude of a multi-channel, frequency-
division-multiplex speech or data baseband signal. For many purposes,
such a composite signal is adequately approximated by a random time
function having a gaussian distribution of amplitudes. Furthermore,
the total distortion will almost invariably be small enough that the
distorted signal is also adequately approximated by such a signal.

Under these conditions, an expression of the spectral density of
the output signal in terms of the filter transfer function and the
spectral density of the input signal, i.e., a second-moment analysis,
can provide useful engineering information. This technique will be
applied to the input-output phase relationship given by Eq. (7) using

(45)

the methods described by Rice, even though the use of a gaussian
process cannct be justified except as an adequate approximation to the
time process. The convergence criterion developed in Appendix A
requires that the Taylor's series expansion for the input signal
exp[i¢(t)] converge uniformly in the infinite interval on t. Only

bounded functions can be shown to satisfy such a requirement, and

while the bound can be arbitrarily large, it can always be exceeded
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by a gaussian function. It is hoped that the plausibility of the
results will stimulate efforts at analytical justification of the
procedure,

Let o(t,w), we(;, denote a sample function of a stationary, differ-
entiable, zero-mean, gaussian process having an autocorrelation func-

tion R@(t) and a spectral density ww(f), where R and W are a Fourier

pair
Ree) = [ at wpe ™ e - | 4t repyemHEE (10)
- - O
The autocorrelation function is defined by
R (7) = Efo(t,w)o(t+r,w)] (11)

where the expectation operator E denotes an ensemble average. The
output spectral density is determined formally from Eq. (7) by using
Eq. (11) to form the autocorrelation function and then by applying

Eq. (10). That is

W (D) = FELo(t,w)e(t+r,w)] (12)

where F denotes the Fourier transform operator and where the opera-
tions are applied term-by-term to the pairings which result from using
the expansion for 6. If it is desired to express the results in terms

of the input and output phase rates, the relationships

2
Wy (D) = MD)W (6) = U (D)/ D) (13)

(Ref. 45, Sec. 3.3) may be used.
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To facilitate the identification of the various components of the
output spectrum, let the superscripts S, D and C, when applied to the
output spectrum we(f), denote, respectively, the signal, distortion
and crosstalk. Then, as shown in detail in Appendix C, a spectral

analysis of Eq. (7) yields
WS(E) = [G(E) [P ()
5 P

W0 = 20 (5 [ ap W (o)

- ®

x {Re G(p)cC-e-D6(D- [6(0)|* oo |*}

(14)

C = - ) -
W (£) = dp | do W (£-p=0)W (P)W ()

ol
g ——8
g & 8

X |2G(£~p-0)G(p)G(c) - G(£f-p-0)G(p+o)
- G(p)G(£-p) - G(0)G(f-0) + G(F)|°

The origins of these components in the expansion of Eq. (7) can
be seen by designating the first three terms of the expansion as
S, D3 and DS’ respectively. The leading term is recognized as the
signal component and the next two as the third- and fifth-order dis-
tortion terms. In this notation, the signal component of the output,
Wg(f), is given by the SXS term in Eq. (12) and is seen to involve
only a simple linear operation on the input spectrum ww(f). Also, it
is complete in the sense that no further contributions can be made to

it by higher-order terms in the expansion.
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The distortion and crosstalk components of the output will
generally involve operations of all higher orders on the input.
Those given in Eq. (14) constitute first-order contributions inas-
much as they are the leading or principal terms of their type. The
first-order distortion, wg(f), is given by the SXD_ terms. The SXD

3 5

and some of the D3XD3 terms give rise to second-order distortion
components which are neglected; the first-order crosstalk, wg(f),
then comes from the balance of the D3XD3 terms.

This distinction between the distortion and crosstalk derives
from the presence of the input spectrum, w@(f), as a multiplicative
factor in some of the output spectral terms. These terms, which are
designated as distortion, are unique in that their contribution to a
given frequency interval in the output is directly related to the
amount of input in that same frequency interval; in particular, if
there is no input, there will be no output. The contributions of
the other components to a given frequency interval in the output are
relatively insensitive to the presence or absence of an input in that
same frequency interval, since they result from convolutions of the
input spectrum and the filter transfer function. By analogy with the
intermodulation discernible on an idle telephone channel, these con-
tributions are referred to as crosstalk. Although the crosstalk level
is frequently less than the distortion, it is often more objectionable

subjectively and therefore constitutes an important system performance

criterion.
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IV, NUMERICAL EXAMPLE--FM WITH UNIFORM BASEBAND THROUGH
A SINGLE-POLE FILTER

As mentioned in the introduction, one of the most important
filters to which the foregoing analysis can be applied is the single-
pole filter. The normalized equivalent low-pass transfer function
of this filter is given by

G(f) = 1 = 1 ~ Py -f- =

1 + i2rf 1+ if

f
ra (15)

c
where fC is the 3-db cutoff frequency (which corresponds to the 3-db
half-bandwidth of the original band-pass filter). Substituting Eq. (15)

into Eqs. (l4) yields, after some tedious but straightforward algebra

W _(£)
Wo(D - <
1+ f
2
4 £ ()
wg(f) B 2
1+ f
[aa) dp .Ez Ty (p)
X 2 5 3 (16)
S (M) [1+(e+E) 7] [14+(p-£) "]
F 7 2 2 2
We(f) = ——— [apJao W, (E=p-0) ()W (o) (£-p-0)” 2" g

6(1+£7)

) -2 -m

b+ 4ER + GE(pre) (£-p) (£-0) + (pre) (E-p) 2 (E-0)®
[14+(£-p-0) 2 1(14a2) (14D [1+(p40) °] [1+(£-p)°] [1+(£-0)°)

X

where the underlined quantities are normalized to fc.



14

An input signal of particular interest is one which is frequency-
modulated by a gaussian signal having a uniform spectral density in
(A,B) cps, where A << B, since such a baseband closely approximates
a frequency-division-multiplexed, multi-channel communication signal.
The spectral density of the input phase rate can then be written

(2m D)z
Seay ¢ A |[f] < B
ch(f) = (17)

o , f elsewhere

where D is the rms deviation of instantaneous frequency and where,

from Eq. (13), the spectral density of the input phase becomes

2
—D—Z-,Aslf]sB
WO(f) = 2(B-A)f (18)
¥
o ., f elsewhere

It is convenient, for simplicity, to set the lowest baseband
frequency A equal to zero despite the fact that the rms phase (i.e.,
the square root of the integral of w@(f) over all f) then does not
exist. The expansion for the output phase is, of course, meaningless
in that case, but the corresponding expansion for the output phase
rate apparently remains valid. However, the only justification given
here is that if the spectral density of the output phase rate is com-
puted from Eqs. (13) and (16) using Eq. (18) for w@(f) and if the

limiting values are taken as A approaches zero, then the results have
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meaning and are identical to those obtained by simply setting A equal
to zero. Consequently, the input phase rate and phase spectra will

be taken as

2.2
Wé(f) - ZHBD

2 > |fl =B (19)
W(£) = ——
? 2B f

and zero elsewhere.
Substituting w@(f) from Eq. (19) into Eqs. (16) and using Eq.
(13) to obtain the spectra for the output phase rate then yields

S
wg(f) 2TT2

2
D7/ £ B(1+£%)

[£] =B

“

WE(£) _ et —]} dp P
Y/e  BaED) ) (g [1+(eD ) [14(e-H7] 20
WEC) gl .
D6/fi i 128°(1+£%) jdﬂfdg
b+ 4E + GE(pro) (E-p) (-0) + (p#0) (E-p) P (£-)”
X

2 2 2 Pam o 20a L \24
(14+(£-p-0) "] (1+a ) (I+p ) [1+(p+a) " JLI+(£-p) “J[1+(£-0) 7]

where it is understood that the terms vanish in those frequency inter-
vals in which they are not defined and where underlining indicates

normalization to fc. The region of integration for the crosstalk temm
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is shown in Fig. 1. Since spectral densities are even functions of
frequency, these spectra will be plotted subsequently only for
positive frequencies.

The spectral density of the signal component of the output phase
rate given by the first of Eqs. (20) is plotted as a function of the
relative baseband frequency, f£/B, for a number of baseband-to-filter
half-bandwidth ratios, B/fc, in Fig. 2, and in decibels in Fig. 3. As
might be expected, the output spectral density is fairly uniform when
the filter is wide, i.e., B/fC small. As the filter is narrowed, the
output takes the shape of the filter power response and, indeed, the
spectral density is down 3 db at the highest baseband frequency for
a filter for which B/fC = 1.

The spectral density of the distortion component of the output
phase rate given by the second of Eqs. (20) can be integrated by ex-

panding the integrand in partial fractions. The result is

D
; 373 2811 3 {ta“ "B+ 2 . 1os = 2+1J
D /fC B (ﬁ +1)(£ +4) 8(£ +1) (g-f) +1
(21)
+—-“£?;-—-2—t'1]3+f + tan S(B-f f£] <B
> an " (B+f) an (_-_)] s I |
4(£+1)

which is plotted in Figs. 4 and 5. The distortion increases with base-
band frequency in general, going as the square of the frequency for
wide filters. A drop-off at the higher frequencies, resembling the
skirt of the filter power response, occurs as the filter is narrowed,

i.e., as f_ is decreased thereby increasing B/f .
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= p

Fig. 1— Region of integration for crosstalk computation
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In principle, at least one of the integrations for the crosstalk
can be performed by the same procedure of expanding by partial frac-
tions. However, the algebra required appears too formidable to war-
rant the effort. Even if it were accomplished, it is highly likely
that the second integration would not be possible analytically.
Therefore, numerical results were obtained by machine computation on
the IBM 7044, using the technique of iterated integration to evaluate
the double integral.* The results are plotted in Fig. 6, and in
decibels in Fig. 7.

Like the distortion, the crosstalk tends to zero at the lower
end of the baseband and, in general, increases with frequency within
the baseband, Also, the effect of the filter power response is again
evident for narrow filters., Typical of a third-order spectral density,
the crosstalk spectrum extends to three times the highest baseband
frequency and falls smoothly to zero. The signal and distortion
spectra both vanish abruptly beyond the highest baseband frequencies
since they both contain the input signal spectrum as a multiplicative
factor.

Useful approximations to these spectra can be obtained by as-
suming the highest baseband frequency B sufficiently small in compari-
son with the filter 3-db half-bandwidth, fc, so that variations of
the denominator terms in Eqs. (16) over the regions of integration

can be neglected, Simple integration then yields

«<
The Romberg approximation to the definite integral was employed
with a relative difference between successive approximations of

1073,
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S
2 E——B—' s lfl < B
D/f =
C
wg(f) or 262 f
r3="3 - |fl<B
D /f =
c (22)
2.2
£
c — 3 Bz—.fz) ,  |f|l =B
Wé(f) 3B
D
0%/ ] 2¢2 )
C
=5 (3B - |[f)", B < |f| =3B
6 B

These spectra exceed the correct values slightly but do not differ
significantly for values of B/fC up to about 0.2, They are shown in
Figs. 4 to 7 as dashed lines for B/fC = 0.1 and 0.2.

The ratios of signal-to-distortion and signal-to-crosstalk
spectral densities are shown in Figs. 8 and 9. These spectral ratios
are quite similar in shape and decrease steadily across the baseband.
The signal-to-crosstalk spectral ratio exceeds the signal-to-distortion
spectral ratio by a substaniial amount for cases of practical interest

4
Aid Py

being about 10 db greater even when the mms frequency deviation equals
the filter 3-db half-bandwidth, i.e., D/fC = 1. The approximations
of Eqs. (22) can also be used to obtain simple formulations of these

ratios valid for B/fc small. These become

o
We ()

1
W2 (f) 4 D°f
5 D1 (23)

S
Wy (£) 6 B°

= £| s B
2_4 2 2 -
Wg(H)  £D (3B £)
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and are shown as dashed lines on Figs. 8 and 9 for the two lower
values of B/fc.

Finally, the ratio of total signal to total distortion, SDR, is
plotted against the highest normalized baseband frequency, B/fc, in
Fig. 10. The total signal is simply the integral of the first of
Eqs. (20). The total distortion was computed numerically from Eq. (21)
on the RAND JOSS* computer using a two-point gaussian integration with
20 intervals. The approximations of Eq. (22) may also be integrated

from -B to B to yield

SDR = 53 (24)

4DB

1o {w

which is valid for B/fC small and is shown on Fig. 10 as a dashed
line. It may be conjectured that if this ratio is large, then the
decreasing sizes of distortion and crosstalk relative to signal will
insure that the higher-order contributions of distortion and cross-
talk can be safely neglected. It is on this basis that the foregoing
theory is represented as an accurate measure of the distortion and
crosstalk with the only condition being that the total distortion be
small.

For example, from Fig. 10, the signal~to-distortion ratio equals
10 db for the filter and input spectrum being considered if the filter
hal f-bandwidth fC equals 2 Mc, the rms frequency deviation D equals
1.4 Mc and the highest baseband frequency B equals 1 Mc, i.e., D/fC =
0.7 - 1.5 db and B/fC = 0.5. Then, from Fig. 8, the signal-to-distortion
spectral ratio at the upper end of the baseband (the worst channel) is

2.6 + 3 = 5.6 db and, from Fig, 9, the corresponding signal-to-crosstalk

* .
JOSS is the trademark and service mark of The RAND Corporation

for its on-line time-shared computer program and services using that
program,
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spectral ratio is 12.6 + 6 = 18.6 db. This is, of course, a somewhat
extreme example of a virtually unusable channel but serves nevertheless
to indicate the wide range of applicability of the results.

As a more practical example, consider an FM signal, modulated
by a uniform baseband extending to 2.4 Mc and having an rms deviation
of 20 Mc in the RF channel. Assume a frequency feedback receiver
having a feedback factor of 20 db, uniform across the baseband, and a
single-pole IF filter with a 3-db half-bandwidth of 4 Mc. The rms
frequency deviation in the IF channel is then 2 Mc and the system
parameters become B = 2,4 Mc, D = 2 Mc and fC = 4 Mc, yielding the
ratios B/fC = 0.6 and D/fC = 0.5 = - 3 db, Recalling that the distor-
tion in a linear feedback network is reduced by the feedback factor,
it follows from Fig, 10 that the signal-to-distortion ratio
SDR = 6.1 + 6 + 20 = 32,1 db., The signal-to-distortion spectral
ratio at the upper end of the baseband becomes 1.9 + 6 + 20 = 27.9 db
from Fig. 8 and the corresponding signal-to-crosstalk spectral ratio
is 11.6 + 12 + 20 = 43,6 db from Fig. 9.

It is seen that the distortion and crosstalk remain substantial
in terms of the criteria for high-fidelity telephony. Further improve-
ments can be obtained only by increasing the feedback, which poses
severe practical problems in such wide-band circuitry, or by widening
the IF filter, which vitiates the threshold reducing advantage of

the feedback process.
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Appendix A

EXPANSION OF OUTPUT PHASE

To expand the output phase given by Eq. (6) use the series

tan-1 X = ——E;—i [1+~% ( X 2) + g:g ( X 2> + ...} (A-1)

2
which converges for x < «, and take x as the ratio of integrals in
Eq. (6)

du g(u)sin p(t-u)

(A-2)
du g(u)cos p(t-u)

Oe— 8 |Oo—8

Then the terms of interest in Eq. (A-1) are of the form

]

I du g(u) sin @(t-u) j du g(u) cos @(t-u)
X _ ab _0 0 (A-3)

5 > > p @ 2
1 +x a+b rlau g(u) sin ¢(t-u)]2 +[jdu g(u) cos Q(t-u)j
and
. 2
. [Jos gsin o(e-v) |
x __a - 0 - (A-4)

[Tﬁu g(u)sin @(t-u)]z+[Tdu g(u)cos @(t-u)]z
0 0

The sine and cosine functions can be expanded into power series

, 2 . . .
which converge for ¢ (t) < . Let these series, or their equivalent,
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the Taylor's series expansion for the input signal exp[iw(t)], converge

uniformly on the infinite interval on t. Then, since

J dulg(u) | < = (A-5)
0

(46)

for all stable networks, the series may be integrated term by temm.

The numerators in Eqs. (A-3) and (A-4) become

S _L 1 .
ab-[@l--3—1¢»3+ i ] [1 T 4, f T 4, ]
_ e 1 1 s 7
= 4m 37 85 gr %t oT808 Tiar Bt T 45t 0(e)) (4-6)

and

2 6

where the notation @n is generalization of Eq. (8)

o]

¢ = [ du g(w) ¢"(cu) (A-8)
0]
while the denominators are
2 2
2 2 1 . 1 1
a + b = [Ql - 3? 93 + ...] + [1 - ET Qz +-ZT Q4 - ...J
2 2 2 1 2 2
= @1 iy @1¢3 + + 1 - 5T @2 + ?3732§2 + 7T §4 +
2 1 1 .2 1 6
= < - 241 2 ¢ —
1+ ¢, ¢ 3 01¢3 +7 %t ¢4 + 0(p7)

=1+ R (A-9)
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The reciprocal of the denominators can be expressed in powers of

R by using the expansion

(+R) "' =1-RrR+RE- ..., RZ < 1 (A-10)

which requires that the sum a2 + b2 lie in the open interval (0,2).
It is not possible to bound the sum away from the value zero since
certain functions can cause a and b to vanish simultaneously for some
values of t. Thus, a necessary condition for inverting the denominator
is that a + ib, i.e., the output signal given by Eq. (5), not vanish.
An example of a function which achieves this at t = 0 is @(t) =
ZWkJPtg(s)ds-+ A, where k is an integer not zero and A is an arbitrary
0 *
constant, It will be assumed in the following that such functions
are sufficiently singular that they can be avoided or, as will be the
case when a spectral analysis is performed using an ensemble of func-

tions, that their effect can be neglected.

To bound the denominator from above, note that it can be written

a2 + b2 = j du I dv g(u)g(v)cos[op(t-u)-p(t-v) ]
0 0
© @ © 2
< J' du j dvlg(w) | [e(v)| = U du]g(u) |] (A-11)
0 0 0

from which it follows that a sufficient condition for inverting the

denominator is given by

@©

J' dulgw)| < /3 (A-12)

0

*
Private communication from O. A. Gross of The RAND Corporation.
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This condition requires that the filter impulse response be "well
behaved." While the looseness of the bound used may have made the
condition excessively restrictive for general use, it is satisfactory
for the cases of immediate interest. For example, it is clearly satis-
fied by any non-negative impulse response, such as that of a first-
order filter, by virtue of the normalization of Eq. (4). Although it
does not appear feasible to apply Eq. (A-12) analytically to the impulse
responses of higher-order filters, it can be used graphically on plots
similar to those given by Henderson and Kautz.(47) It is apparent
by inspection of Fig. 9, Ref. 47, that Bessel filters of all orders
satisfy Eq. (A-12). The low-order Butterworth filters, and to a
lesser extent Tchebycheff filters, also appear to have sufficiently
small negative-going regions in their impulse responses to satisfy
the condition.

Returning to Eq. (A-9), expanding in powers of R according to

Eq. (A-10) then yields

2 21 _ . (2 . 1 1.2 i
@97 =1 -lef -6, - g e v e, ]
4 2 ,
2 1 3.2 1 4 2 6
1 1+§2+3¢1®3+4¢2 13 .t 2¢1Q2+0(cp)(A13)

Substituting Eqs. (A-6) and (A-13) into Eq. (A-3) gives the leading

term in the expansion of Eq. (A-1)
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(ab) (a’ + b7}

4+x
= [91' % 23" ';' 150t E% S _1% ¢y¥qt _1%6 oot

X [1-@i+¢2+ % ? 85t % Qé’ _1% tir @l{'ZQiQf
él_é%_@l@f % Qigf 23? 12712 14

13 1
-— Q - —
2 91%27 2

It
=4
—

1
1
= W
+

1 7
® - —= —_
2" T2 2%t 120 &5t 0(9)

(A-14)

Similarly, substituting Eqs. (A-6), (A-7), and (A-13) into Egs. (A-3)

and (A-4) yields the second term in Eq. (A-1)

2

22 _XEE - (ab)a’ (a’+ b*) "
14x7 14x
-3 [Ql" s R -] L_éi -3 HEgt ] [1-@‘i+@2+...]
310 b fng d it ] [,
=% [éi-Z@iﬂ@f@z—% @‘?;@3- % @f:’@z + ]
——23- @i’ -—g @i + @f@z -% @‘i% + 0Gp")

The third term in Eq. (A-1) is
9 2

8 _x_ <_z<__>
15 1+x2 1+-x2

{% (ab)aA(az+ bz)-3

il

8 .5 7
15 @1 + 0(p )

(A-15)

(A-16)

Summation of Eqs., (A-14), (A-15), and (A-16) produces, finally
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9(t) = ¢; - ';' @i’ +3 %1% ’% 0y + Qi% +g élég - 37 44,
+ 1 @i’ -2 82, -—11—2— 8,2, +"1%_6 B+ e
-3, - % [% - 33,8, + 3@1@§ - @ﬂ
+ o [@5 - 58,8, + 108,8] - 108,80 + 58,87 - @i]

1 2 2 3
-3 [@2 - 288 + @1] [@3 - 38,8, + 38,8 - @1] + ...

r 5
= 8(t) - 3—1, _[ du g(u)[olt-u)-8(t) 1> + = J' du g(u) [p(t-u)-2(t) ]
0 0

(A-17)

T 7
L [ 4w g lote-w)-s(0) 1 [ du g@lp(t-u)-8(©)7° + ()
0

12

o—— 8

which is the desired result. The algebraic manipulations required
between these steps are not obvious and, if desired, the result
is most easily verified by expanding Eq. (A-17) and comparing it with

the preceding lines,
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Appendix B

TAYLOR'S SERIES EXPANSION

The output phase function given by Eq. (6) is vector-valued,
i.e., each input phase function @(t,y), weli, defines a value of the
output phase function 6(t,w) which is a point or vector in L4 Such

(44)

vector-valued functions are treated by Hille and Phillips who
show that under certain conditions the Taylor's series expansion of

a vector-valued function f(x) is given (Thms. 3.16.2 or 3.17.1) by

o

£(x+h) = 24 ﬁ% 8" (x;h) (B-1)
n=0
where (Eq. (3.16.1)) 6nf(x;h), the nth variation of f(x) with increment
h, is given by
n a"
5" (x;h) = [’"E £ (x+Ch) (B-2)
d¢ (=0
It is also shown (Thm, 26,3.5) that 5nf(x;h) is a homogeneous poly-
nomial of degree n in h and that, in particular (Thm., 26.3.2),
§£(x;h) is linear in h,
Assuming differentiability, it is possible to obtain the expan~

to Eq. (6). The

[11]

sion for 6(t) given by Eq. (7) by applying the abov
expansion will be evaluated at the point x = 0 and h will be taken as

the input phase ¢, i.e.

h = o(t-u) (B-3)
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where the subscript has been introduced to identify the variable of

integration. In these terms, the expansion becomes

£(h) = Z % 8™ £(0;h) (B-4)
n=0
where
du g(u)sin rh
n a" -1 g ¢ v
§ £(0;h) = — tan = — (B-5)
d¢ rdu g(u)cos ghu
0 ¢=0

The zero-order variation is found directly from Eq. (B-5) for

s%£¢0;h) = 0 (B-6)

The first derivative is given by

d -1 a
dg tan 5
_ba’- ab’
a2 + b2

fdu g(u)cos ghuzau g(u)hucos ghu+gﬂu g(u)sin ghugﬁu g(u)husin ghu

[ I du g(u)sin ghu]2+ [ I du g(u)cos ghuJZ

dv g(u)g(v)hucos g(hu-hv)

dv g(u)g(v)cos g(hu-hv) (B-7)
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so the first variation becomes

ol £(0sh) = [ au g(u)h (B-8)

O w8

where the nommalization of Eq. (4) has been used.
Further derivatives of Eq. (B-7) are required to find the higher

variations. These can be found systematically by writing Eq. (B-7) as

©0)
RO (g - L (8-9)
p{® (0
or
RO ()p@ () = n© ¢y (8-10)

Differentiating the product then yields higher orders of R implicitly.

Thus, the rth derivative of Eq. (B-10) is

(5) xR 0p* (0 = nP g (B-11)

S

i gm

S

. th
which, when evaluated at zero and used recursively, yields the n va-

riation according to

s"£(0sh) = R (0y | (B-12)

Fh

The expansion of Eq. (B-11) will involve various derivatives o
N and D. From their definition by Eqs. (B-7) and (B-9), it is seen

that
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0 5 m odd
n™ 0y = e w (B-13)
(-l)m/2 I du j dv g(u)g(v)hu(hu—hv)m; m even
0 0
and
0 5 m odd
2™ (0) - (B-14)

(-l)m/2 J du J dv g(u)g(v) (hu-hv)m; m even
0 0

As a result, note that when r is odd in Eq. (B-11) and the derivatives
are evaluated at (=0, then all the even derivatives of R are paired
with odd derivatives of D, which vanish, and the odd derivative

of N on the right causes the sum of all products involving odd de-
rivatives of R to vanish. Commencing recursively from R(l)(O), which
clearly vanishes, it then follows that all odd derivatives of R vanish,

and from Eq. (B-12), that all even variations therefore vanish, i.e.
énf(O;h) =0, n even (B-15)

In these terms, the first variation is found again by setting

r=0 in Eq. (B-11) which yields, at (=0

R(0) ©) = N(o) )

j du g(u)h_ (B-16)
0

wherein, from Eq. (4)

0@y =1 (B-17)
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Then, from Eq. (B-12)

5L £(0;h) = J du g(u)h_ (B-18)
0

which, of course, agrees with Eq. (B-8).
To find the third variation, set n=2 in Eq. (B-11) at (=0 and drop
the vanishing odd derivatives of R. Then
R 0y + RO (0)p® (0) = 5P (0) (B-19)
and

53¢c0;n) = R (0) = - i du

ot—8

av g(w)g(W)h (h = b )

-]

+ J aw g @), J du j dv g(wg) (hu-hv)z
0 0o 0

- T au g()n, - T av g(v)hv]3 (B-20)
0 0

where algebraic manipulations similar to those leading to Eq. (A-17)
have been performed.

The fifth variation follows from setting n=4 in Eq. (B-11)
R 0y + 6@ (0)p® (0) + & 0)p™ (0) = 8 (0)

SO

R4 0) = 84 )-6[ 8P )1 @ ©) PP © -5 2P 0)  -21)

Then



(o< TN« <]

5°£(0;:h) = jdufdv g(u)g(v)hu(hu-hv)4
0 0

- 6jdujdv g(u)g(v)hu(hu—hv)zjdujdv g(u)g(v)(hu—hv)2
0 0 0 O

+6fdu g(u)hu[jdufdv g(u)g(v) (hu-hv)ZJZ
0 0 0

-jdu g(u)hujaujdv g(u)g(v)(hu-hv)4
0 0 0

- fdu g(w) [n, - fax g(x)hj

0 0 (B-22)

_1o}iu 2(u) [hu-jax g(x)hX]F jéu g(u) [hu-jhx g(x)hXJB
0 0 0

0

where, again, a considerable number of algebraic manipulations have
been performed but not shown.

The final expansion is obtained by substituting Eqs. (B-6), (B-8),
(B-15), (B-20) and (B-22) in Eq. (B-1) and using Eqs. (B-3) and (A-8)

to return to the original notation. Then

8(0) = 2(e) - 57 [au g0 lo(e-w)-4(0) 1% + o+ [au a(w lg(e-w)-2(e) P
0

0
" @ (B-23)
- 17 Jav s loewy -a0e) 17 Jau g lo(e-w-e0 P+ ...
0 0

which is the desired result.
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Appendix C

SPECTRAL ANALYSIS

As suggested in Section III, let the output phase of Eq. (7) be

written

g(t) = s(t) + D3(t) + DS(t) + ees (c-1)

where §, D3 and D5 denote the signal and third- and fifth-order com-
ponents of the output, respectively. The signal component of the out-
put phase is then obtained immediately from Eq. (12) by considering

the SxS term and introducing the autocorrelation function of Eq. (11)

and the Fourier transform of Eq. (10) as needed. Thus

wg(f) =?EUdu g(u)cp(t—u,w)zdv g(V)Qp(t+T-v,w)]

1
[oR
c
o
<

g(u) g (V)FE[o(t-u,w)p(t+T-v,w) ]

0 O
o] o0
= ‘Jdu‘Jdvvv g(u)g(\"v)_l_' ('T-!-U‘V)
®
0 O
o) @

- T
g(u)g(v) dTR@(T+u-v)e iznf

Il
£
o,
<

-i2ﬁf(T-u+V)

[}

o
s
0.
<

B (W) [aTR_(De

x fo's) o]

) i _iom
jdu g(u)elznfujdv g(v)e 12ﬂfVJATRw(T)e i2mfrT
0 0 -

G(-f)c(f)ww(f) (C-2)



where the Fourier transforms of Eqs. (2) and (10) are used in the last

step. Finally, from the property of G given by Eq. (3)
S 2
Wg(£) = [6(8) [T (D) (C-3)

which is the first of Eqs. (14). It has been derived in some detail
to illustrate the sequences of steps which are typical of those to

follow.

There are two SXD3 terms in Eq. (C-1). From Eq. (12) the distor-

tion component of the output phase then becomes

Wo ()

é%ﬁ?E{Jdu g(U)w(t-u,w)fav g(V)[Q(t+7,w)-@(t+7-v,w)]3
0 0

+ Jau gp(erru,u fav g face,0-o(t-v,0)1°}
0 0

1
ER

oe—38

dufav g g(v) FE{p(e-T-u,0) [2(t,0)p(t-v,0) 1’
0

(C-4)

+ w(t+T-u,w)[é(t,w)-@(t-v,w)]3}

Thus, it is necessary to consider expectations of the fomm
3
E{cp(tfr-u,gg) [Q(tﬂb)'@(t'v,w)] }-

Now, if F(t) is a zero-mean gaussian variate, then(as) (Eq. (42b))

E[F(tl)F(tZ)...F(tzn)J - Z E[F(ti)F(tj)]E[F(tk)F(tz)]... (C-5)
pairs
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where the sum is taken over all the 1¢3¢5-.¢(2n-1) different ways the
2n time points tl,tz,...t2n can be divided into n pairs. Then, since

¢ and $-¢p are such quantities, it follows that

E{w(tﬂ-u,w)[é(t,w)-w(t-v,w) ]3}
(C-6)

= 3 Bfp(cat-u,0) [#(c,0)-p(e-v,0l JE{ (2t ) (e-v,0) 17}

Using Eq. (8) to eliminate ¢, the first expected value in Eq. (C-6)

becomes

E {p(t+t-u,w) [(t,w)=o(t-v,w) ]}

E{@(tiT—u,w)tde g(x)m(t-x,w)—m(t-v,w)]}
0

[ax 8B {p(tar-u,u) [p(t-x,w) -0 (t-v,) 1}
0

©

jdx g(x)R¢(1T+x-u)-%?(iT+v-u) (Cc-7)
0

where Eq. (11) is used to introduce the autocorrelation function RW.

Similarly, the second expected value in Eq. (C-6) becomes
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E{[@(t,w)-@(t-V,w)]z}

[oe]

fdy g(y)@(t-y,w)-w(t-v,w)]}
0

E{[Eﬁx g(x)@(t-x,w)-w(t-v,w)] [

jdxjay g(x)g(¥)E[o(t-x,w)o(t-y,w)]

0 O
- Zjax g(x)E[¢(t-x,w)@(t-v,w)] + E[mz(t-v,w)]
0
- (j)dx(f)dy BEOBOIR Gy - 2 idx BOOR_(v-3) + R_(0) (c-8)

From Eq. (10), the third term above is
R (0) = f dp W ( (c-9)
0 oW, p)
- O

and the second term becomes

iﬁx g(X)Rw(v-X) = gﬁx g(x)_{fp ww(p)eizﬂp(v'x)

= [ap u_(p)cpy e (c-10)

-0

The leading term in Eq. (C-8) amounts to another integration on Eq.

(C-10), or

(j)dxidy BCIEMIR (r-y) = gdx gGo) [dp wcp(pm(p)eiz”px

- O

@ d 2
=-J&p W@(p)G(p)G("p) =-£jp W¢(p)|G(p)| (Cc-11)
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Substituting Eqs. (C-9), (C-10), and (C-11) in Eq. (C-8) then yields

B{[8(t,0)-0(=v,0) ]} = [dp )] o) |P-20(p) €™ TPV 4 1] (c-12)

-

and further substituting Eqs. (C-7) and (C-12) in (C-6) yields

E{p(t47=u,0) [8(t,0)-p(t-v,w)]")

= 3 { g dx g(x)R@(iT+x-u)-Rw(iT+v~u)}
(Cc-13)

«{ [ 40w, [6(o) 2600 ™™ + 1] |

-

When the Fourier transform operation of Eq. (C~4) is performed
on Eq. (C-13), it is clear that only the first factor is involved.
Its two forms are

?{ Idx g(x) R(P(‘r+x-u) -R(P(T-l-v-u)}

gdx g(x) -]Zl’re- iem le:ch (T4+x~u) --Rc'p (T+V-u)]

- -]

[ udx g(x)e

v

o]
12nfx_ elZﬂfVJe—xZHfu j dTe-lZHfT Rw(T)
- O

' i2nfv) ~i2nfu (C-14)
[G(-f)-e Je w@(f)

and, noting that RCP is an even function
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3#{ iﬁx g(x)Rw(-T+X"U)‘R¢(‘T+V“u)}

(C~15)

- To(f) ~emiZmevigiznfu
[ (£) -e ]e W, ()

Substituting Eqs., (C-13), (C-14), and (C-15) in (C-4) then yields

=1
wg(f) T2

o, 3

dujdv JOLGIRC
0

< {[G(_f)_eiZva]e—iZﬂfu+[G(f)_e-i2nfv]e12nfu} (C-16)

«{ [ ao w16 - 266y + 17}

The integrations on u follow trivially.

Consider next the product of the second line of Eq. (C-16) with
those functions of p in the third line which do not contain v, viz.,
IG(P)IZ + 1. The bracketed quantities, [G(+f) - exp(Fi2nfv)], then

clearly vanish when integrated on v. Thus, the only term remaining

is
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@©

Wp® = - (0 [ 4 v ()6 g av gwe

- X

i2mpv

X {[G(-f)—eizan]G(f) + [G(f)-e-iZﬂfv]G(-f)}

AGCHLEROLIO

- 0O

x {{eC-p6¢0-6(-0-5 Jo (D) +{G<-p>c<f>-c<-p+f>jc(-f>}

-0 (9 [ o W (9)C(

(c-17)
x [216¢8) "6 (-p) = €(-p-£IG(E) = G(-prDIC(-D) |

The spectrum W is an even function so a change in sign on the third
term permits the product of the G functions to be written with the

negative cf the arguments of the similar product in the center term.
Then, by the symmetry property of G given by Eq. (3), the sum of the
last two terms in Eq. (C-17) is seen to equal twice the real part of

either one. Thus, Eq. (C-17) becomes

Wg(f) = 20 () _idp ww(p>{Re G(p)c(-p-f)c(f)-lc(f)|2|G(p)IZ} (C-18)

which is the second of Eqs. (14).
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The terms of next higher order in Eq. (12) arise from the SxD5

and the D3)<D3 terms of Eq. (C-1). The first of these can be recognized
immediately as a second-order contribution to the distortion given by
Eq. (C-18). This follows from the fact that when the expected value
of the resulting sixth-order product of gaussian variates is factored
into the various groups of three pairs according to Eq. (C-5), then
only one of the pairs will be a function of the covariance variable 7.
When the Fourier transform of the product of the three expected values
is taken, only that term will be involved and the result will yield a
multiplicative factor Ww(f). In this respect, it is completely analo-
gous to the steps leading to Eq. (C-14).

The D3XD3 term also yields a second-order distortion contribution
as well as the desired first-order crosstalk. To show this, note from
Eq. (C-1) that

1
(312

D,xb, =

20, FE{ [au g(u)Mp(t-u,w)-2(c,0) 1’
0

x [av g [oCerr-v,0)-2(e+7,0) 7%}
0

= 3% :?JHUJHV g(u)g(v) E{[Q(t-u,w)-é(t,w)]3
00 (C-19)

3
X [@(t+T-v,w)-3(t+T,w) ] }
For brevity, let a and b denote, respectively, the first and second

bracketed terms in Eq. (C-19). Then, according to Eq. (C-5), the 15

different pairings of E(a3b3) yield the two unique terms
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E(a’b>) = 9E(a’)E(b)E(ab) + 6E°(ab) (G-20)

| Of these, only E(ab) is a function of the covariance variable T, so

the first term in Eq. (C-20) contributes a second-order term to the dis-
tortion given by Eq. (C-18) exactly as did the SxD5 terms. Using only
the second term of Eq. (C-20) in Eq. (C-19) then yields

We(H) =3 #[aufav g@)s(v) B (lo(t-u,w)-8(t,0)]
0 O

(C-21)

x Lop(e+r=v,w)-2(e+7,w) ]}

| and it remains to perform the indicated operations.

‘ Noting Eq. (8) for &, the expected value in Eq. (C-21) is given by

E(ab)

E{[@(t-u,w)-de g(x)@(t-x,w)] [@(t+7-v,w)-de g(x)@(t+T-x,w)]}
0 0 :

E[@(t-u,w)@(t+T-v,w)] -jdx g(x) {E[@(t+T—v,w)m(t—x,w)]
0

[co RN o)

A
+ E[p(t-u,w)p(t+T-x,w) |} + |dx|dy g{x)g(y)E[p{t-x,0)@(t+T-y,0) ]

0 O
= R@(T+u-v)-£dx g(x)[R@(T+x-v)+R(T+u-x]+ gdxjdy g(x)g(y)R¢(T+x-y)

(C-22)

where the definition of R given by Eq. (11) is used in the last step.

From Eq. (10), the first term in Eq. (C-22) is simply

i2mp (T4u-v)

T1 = J dp w@(p)e (C-23)

-0
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and the second temm, noting Eq. (2) for G, is

o]

2 [dx g(x) fdp wﬁ(p)[eiZHp(T+x-v)+ eiZTrp(’r+u—x)]

H
It

v

0

i21Tpu

I dp Wv(p) e G(-P) + e

- O

i2npT -i2Tpv
[e G(p)]

The third term follows similarly as

Jaxfoy seose) [ ap o TP

0 0 -

H
I}

[ec]

Jar W, (P) 12T G (pya(-p)

-

Substituting these into Eq. (C-22) then yields

E(ab) = Tap w@(p)eizin[G(p)-e-iznpvJ[G(-p)—eiZﬂpuJ

-

Finally, substituting back into Eq. (C-21) in the cube gives

(C-24)

(C-25)

(C-26)



wg(f) = % C?TdUTdv g(u)g(v)
0 o
| @
! X { jdv W@(v)eizan[G(v)-e—iznvvJ(G(-v)-eiZHVUJ}{p}{o}

! S ? ™ Ner i2n(vtp+o) T
= GE;thJdpjéc ww(v)h@(p)w¢(0>e

- =00 =

X {mdu g(u)[G('V)-eizﬂvuJ[G(—p)-eiznpu][G(-c)-eiznGu]}

0
| (C-27)
i X {Tﬁv g(V)[G(V)-e-izﬂVV][G(p)_e-iZﬂpVJ[G(O)_e—iZHOVJ}

0 .

The integrals on u and v are readily detemmined by expanding the
integrands and applying Eq. (2) to each term. Collecting terms

involving v yields

- 2G(V)G(p)G(a) + G(V)G(pto) + G(p)G(v+a)
(C-28)
+ G(0)G(vt+p) - G(v+p10)

The corresponding result in u is similar but with negative arguments,
These quantities are complex conjugates (c.f. Eq. (3)), so their

product equals the square of their magnitude and Eq. (C-27) becomes




S4

wg(f) ='% :#jdvjdpjdc W@(v)ww(p)w@(c) oi2m(vtpt0) T

X |2G(V)G(p)G(a) = G(V)G(p+o) - G(p)G(v+o) (C-29)

- 6(@)G(vtp) + Clwtpro) |

Applying the Fourier transform to the exponential then yields a delta
function §(f-v-p-o) thereby permitting a simple integration on wv.

Finally, therefore

C 1
we(f) =% jﬁpjﬁo w$(f-p-0)w¢(p)w@(c)

X |2G(£f-p=0)G(p)G(0) - G(£f-p-0)G(p+0) (C-30)

- G(p)G(E-p) - G(0)G(f-0) + G(£)|?

which is the third of Eqs. (14).
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